HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023 DIGITAL ELECTRONICS

(Common to CSIT, IT Branches)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u>

Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL			
1	a)	Multiply the numbers 2E and 34 without converting them to decimal	[2M]	1	3			
	b)	Simplify the following Boolean functions to a minimum number of literals $xy + x'y + yz$	[2M]	2	2			
	c)	Simplify the following logical expression using Karnaugh maps $F(x,y,z) = \sum (0,2,4,5,6)$	[2M]	3	4			
	d)	Define carry propagate?	[2M]	4	1			
	e)	What is the purpose of programmable logic devices?	[2M]	5	2			
PART-B								

Answer One Question from each UNIT (5X10=50M)

Q.No.	Questions	Marks	CO	KL				
	UNIT-I							
2.	Convert the following numbers into binary numbers	[10M]	1					
	$X=(BC)_{16}$, $Y=(73)_8$ and also find X+Y, X-Y in binary form							
	OR							
3.	How do you convert a gray number to binary? Generate a 4-bit gray code	[10M]	1					
	directly using the mirror image property.							
	UNIT-II							
4.	Reduce the following Boolean Function to four literals.	[10M]	2					
	(A'C)(A'C')(A B C'D)							
OR								
5.	Convert the given expression in standard POS form	[10M]	2					
	f(A,B,C)=(A+B)(B+C)(A+C)							
	UNIT-III							
6.	Simplify the Boolean function using K-map in SOP and POS forms:	[10M]	3					
	$F \stackrel{_{\star\circ}}{\longrightarrow} \mathcal{O} m(0, 2, 4, 7, 8, 12, 14, 15)$							
	OR							
7.	Find the reduced SOP form of the following function. F(A,B,C,D=	[10M]	3					
	$\sum m(1,3,7,11,15) + \sum d(0,2,4)$							
	UNIT-IV							
8.	Draw and explain the block diagram of 4-bit parallel adder.	[10M]	4					
	OR	I						
	Explain the operation of a binary parallel adder subtractor circuit using	[10M]	4					
9.	relevant diagram.							
	UNIT-V	I						
10.	Implement the following Boolean functions using PAL	[10M]	5					
	$F_1(A,B,C) = \sum (0,1,2,4), F_2(A,B,C) = \sum (0,5,6,7), F_3(A,B,C) = \sum (0,3,5,7).$							

OR							
11.	Distinguish among PROM,PAL,PLA	[10M]	5				

218
